U13

EPR and Mössbauer Spectroscopic Studies on Metal Complexes of Pectic Acid and their Derivatives

B. LAKATOS, J. MEISEL, A. ROCKENBAUER, P. SIMON

Central Research Institute for Chemistry, Hungarian Academy of Sciences, H-1025 Budapest, Hungary

and L. KORECZ

Department of Atomic Physics R. Eötvös University, Budapest, Hungary

Foods are more and more deficient in Mg and trace metals, due to the use of increasing amounts of NPK fertilisers, liming and high costs of trace metal fertilization as well as to the purification and refinement of raw nutriments. Recently, for the substitution of these metals, instead of inorganic salts or artificial metal chelates, metal complexes of biopolymers have been used [1], which, administered *per os* to vertebrates, can be absorbed and utilized without harmful side effects. Metal bonds in biopolymers are presumably similar to those in foods, and therefore will be studied by EPR and Mössbauer spectroscopy.

Pectic acid (PAH), which contains polygalacturonic acid and some neutral carbohydrates, *e.g.*, rhamnose, was prepared by the alkaline hydrolysis of pectin [1]. Derivatives of PAH as pectic acid dinitrate (PA)(NO₃)₂H and pectic acid disulphate (PA(SO₄)₂-H₃ were obtained by treatment of PAH with conc. HNO₃ [2] and with the N,N-dimethyl formamidesulphur trioxide complex [3a, b], respectively. We have produced metal pectates as insoluble colour gels by the reaction of PAH with Cr(III)-, MoO(III)-, Fe(III)-, Mn(II)-, VO(II)-, Cu(II)-, Fe(II)-, Co(II)or Ni(II)-sulphate in aqueous solutions [1] and metal complexes of PAH derivatives as water soluble compounds.

The EPR data of PAH gel doped with Mn^{2+} , Cu^{2+} and VO^{2+} ions show outer-sphere arrangement (Table I) similar to Ca alginate and agarose gels [4]

TABLE II. Mössbauer Parameters for Iron(II) and Iron(III)

Compound	I.S. (mm s ⁻¹)	Q.S. (mm s ¹)
FeSO ₄ •7H ₂ O	1.48	3.4
Fe(II)alginate	1.42	3.21
Fe(PA) ₂	1.40	3.15
$Fe_3[PA(SO_4)_2]_2$	1.37	3.08
$Fe[PA(NO_3)_2]_2$	1.40	3.05
Fe(II)-Dowex-Al Chelating Resin	1.30	2.91
Fe(PA) ₃	0.45	0.90
$Fe[PA(SO_4)_2]$	0.40	0.60
$Fe[PA(NO_3)_2]_3$	0.46	0
$Fe_2(SO_4)_3$	0.65	0

Compounds at the Temperature of Liquid Air.

doped with Mn^{2+} and Cu^{2+} ions. In the case of $(PA)(SO_4)_2H_3$ doped with Mn^{2+} , Cu^{2+} and VO^{2+} ions we have also found outer-sphere complexes in the hydrated (freeze dried) state. $(PA)(NO_3)_2H$ doped with Mn^{2+} ions also forms an outer-sphere complex, however, with Cu^{2+} ions it results in an inner-sphere complex and with VO^{2+} ions it gives both types of complexes: (1) outer-sphere and (2) inner-sphere arrangements (Table I). After dehydration (at 105 °C) of fully hydrated samples with an outer-sphere arrangement, EPR parameters will change due to transition of (1) to (2), however, in the case of inner-sphere complexes practically no change in EPR parameters can be observed [5a,b, 6].

The quadrupole splitting (Q.S.) value in the Mössbauer spectra of freeze dried iron(II) pectate also shows an outer-sphere arrangement (Table II). After dehydration (at 105 °C) the value of Q.S. decreased from 3.15 to 2.91 mm·s⁻¹ [7, 8]. In the case of PAH derivatives the Q.S. values decreased with the decrease of water content in the first coordination sphere of iron(II). The Q.S. values of

TABLE I. EPR Data for Mn²⁺, VO²⁺ and Cu²⁺ Ions Doped in Various Samples.

Metal ion Mn^{2+} Host lattice A_{iso} (G) hpf split.	Mn ²⁺	Mn ²⁺		VO ²⁺			Cu ²⁺		
			A _{iso} (G)	$A_{\parallel}(G)$	$A_{\perp}(G)$	81	₿⊥	A∥(G) - hpf split.	
	mie widdi	hpf-splitting		spect. split.		- npr spirt.			
H ₂ O	-95.0	30.4	119.7	203	78	2.422	2.087	-118.5	
PAH	-96.0	64;28	112.2	195.6	70.5	2.403	2.081	-120	
$PA(SO_4)_2 H_3$	-94.7	41; 61; 82	113.9	195.2	73.2	2.376	2.089	-131	
PA(NO ₃) ₂ H	-91.8	36	(1) 114.4 (2) 108.5	196.1 187.8	73.6 68.9	2.318	2.070	-154	
Oxalate	-91.1	22.9	103	180	65	2.318	2.071	-151.5	

270

iron(III)-complexes show inner-sphere coordination with polynuclear structure [7, 8].

The structure of inner-sphere complexes will be studied by IR spectroscopy (see next paper).

According to animal and human investigations, Mg and transition metal complexes of PAH in gel or dehydrated form are suitable for *per os* treatment of iron-deficient anaemia, Mg-deficient ischemic heart diseases [9] and all trace-metal deficient diseases. Fe[(PA)(NO₃)₂]₃ was applicable for parenteral, *i.e.*, intravenous administration of iron(III) to pigs. Unfortunately, however, Fe[(PA)(SO₄)₂]₃ was found to be toxic.

- 1 B. Lakatos, J. Meisel and M. Varju: 'Complexes of Oligo and Polygalacturonic Acids Formed with Essential Metal Ions and Pharmaceutical Preparations Containing the Same', U.S. Patent 4,225,592 (1980).
- 2 K. Smolenski and W. Pardo, Chem. Listy, 26, 446 (1932).
- 3 a. R. G. Schweiger and T. R. Andrew, Carbohydr. Res., 21, 275 (1972).
- b. K. Nagasawa and Y. Inoue, Chem. Pharm. Bull., 19, 2617 (1971).
- 4 J. Oakes and T. F. Child, Nature, 244, 107 (1973).
- 5 a. B. Lakatos, T. Tibai and J. Meisel, Geoderma, 19, 319 (1977).
- b. A. Rockenbauer, P. Simon, J. Magn. Res., 18, 320 (1975).
- 6 S. Deiana, L. Erre, G. Micera, P. Piu and C. Gessa, *Inorg. Chim. Acta*, 46, 249 (1980).
- 7 B. Lakatos, L. Korecz and J. Meisel, Geoderma, 19, 149 (1977).
- 8 G. Micera, S. Deiana, C. Gessa and M. Petrera, *Inorg. Chim.* Acta, 56, 109 (1981).
- 9 T. Fülöp, B. Valenta, B. Nagy, J. Meisel and B. Lakatos, Magnesium-Bulletin, 3, (1b) 29 (1981).

U14

Infrared Spectroscopic Study on Metal Pectates

B. LAKATOS, S. HOLLY and J. MEISEL

Central Research Institute for Chemistry, Hungarian Academy of Sciences, H-1025 Budapest, Hungary

According to EPR and Mössbauer spectroscopical measurements, some 3d-transition metal pectates in fully hydrated colour gel states form outer-sphere coordination complexes [1]. These outer-sphere complexes were transformed to inner-sphere coordination complexes with water elimination and change of colour after dehydration at 105 °C. The comparison of the IR-spectra of these dehydrated metal complexes with those of pectic acid may provide some information on the inner-sphere coordination structure.

The dehydrated samples were pulverized and compressed into disks, after being stirred for 3 min in a vibrator with KI. IR-spectra were recorded on a Perkin Elmer Model 225 spectrophotometer.
 TABLE I. Characteristic IR Absorption Frequencies of Pectic

 Acid and Dehydrated Metal Pectates.

Band maxima (cm^{-1})				Assignment	
Pectic	Ca-	Mg-	Mn-	Cu-	
acid	pectate	pectate	pectate	pectate	
3450vs	3450vs	3430vs	3400vs	3440vs	νон
	2930m				
				2940m	
2600w	-	_			
1745vs	_	-	_	-	ν _{CO} (COOH)
-	1613vs	1632vs	1619vs	1620vs	$\nu_{as}(COO^{-})$
					$\nu_{s}(COO^{-})$
1400s	_	_	_		•
1330s	1332s	1330s	1328s	1326s	β(COH)
1216s	1235m	1234m	1228m	1232m	β(COH)
1140s	1145s	1145s	1142s	1145s)
1096vs	1094vs	1094vs	1092vs	1094vs	νc0
1070s	1072m	1074m	1072m	1070m	> and
1045s	1046m	1042m	1042m	1044 m	νc-c
1016vs	1014s	1012s	1012m	1012m)
948s	958s	956s	956s	954s	$\alpha(1-4)$ and ring skeletal
886m	894 m	890w	888w	888w	β (CH) and
828m	836m	832m	830m	830w	νcoc
786w	816w	812w	812w	816w	
735w	766w	762w	760w	762w	ring-breathing
630m	646m	638m	634 m	636m	γон

Key to intensities: vs = very strong, m = moderate, w = weak.

The observed characteristic frequencies of IRspectra of dehydrated metal pectates and pectic acid can be seen in Table I.

Within the range of $4000-2800 \text{ cm}^{-1}$ and $1400-1000 \text{ cm}^{-1}$ no significant difference can be detected in the IR absorption spectra of dehydrated metal pectates and pectic acid. Thus we came to the conclusion that probably no direct chemical bond exists between metal ions and carbohydrate OH groups of the pectic chain.

Contrary to this, the intensity of the v_{CO} stretching frequency of the carboxylic group of pectic acid at 1745 cm⁻¹ decreases with the increase in the amount of metal ions substituting carboxylic hydrogen ions. According to the degree of substitution, two intensive bands can be simultaneously observed within the range of 1660-1580 cm⁻¹ and 1430–1400 cm^{-1} . The former band may be assigned to antisymmetric $\nu_{as}(COO^{-})$ stretching vibration of carboxylate groups and the latter band to symmetric $v_{s}(COO^{-})$ stretching. As the difference (Δ) between the frequencies of $v_{as}(COO^-)$ and $v_s(COO^-)$ is greater in the case of the covalently complexed carboxylate ion than in the uncomplexed anion (see Table II), an unidentate metal-carboxylate bond [2a, b] could be proposed in the case of dehydrated